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Fluctuations at the self-organized critical state
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Avalanche dynamics is defined as coupled internal motion at two separate time scales. The state parameter
S(t) measures the amount of tension or potential energy stored in the system. FIuctualEBQn)aL—d?Fg,—Fg1
are caused by the actidRy on S of the driving force, giving rise to slow, continuous motion, and the
antagonistic actioffr , of a relaxation force causing rapid, discrete evéatslanches The arrows indicate the
directions of the forcegincrease or decreaséA state parameter may be chosen such that both forces act as
repellers in state space. Self-organized criticdl8pCO emerges whef , is an internal force that exists if, and
only if, F4 is present. When this contingency condition is fulfilled, the two antagonistic forces trap the system
trajectory inside a SOC attractor, which is a state-space region of overlapping basins for the two types of
motion. The conclusions are based primarily on the case of river meandering dynamics, described in the paper.
[S1063-651%97)07611-3

PACS numbegps): 64.60.Lx, 05.40+j

I. AVALANCHE DYNAMICS turbed (sensitive dependence on initial conditipn€on-
versely, a stable system will return to its previous state after
Avalanche or cascade dynamiagses in systems of mat- perturbation. When not expressed, instabilities are present as
ter that allow internal motion at more than one spatial andntrinsic, potential, or possible forces. .
temporal scaléFig. 1). Give a time scale with infinitesimal ~ Four instabilities arise in SOC grainpildthe simplest
resolutiondt and define two nonoverlapping sets of motion Casé consists of even-shaped and -sized dry, cohesionless
dSdt (microscopid and AS/dt (macroscopit such that ~9rains with high surface frictiof8]): (i) Grain locking(lo-
dSdt is continuous andAS/dt consists of discontinuous cal friction) forces vertical buildup(stacking rather than
events (avalanches, cascadeseach occurring over time horizontal spreading(ii) rc_)_I_Ilng of surface grains at the
spansAt, that are either instantaneous or time extende@ngLe of drepo_se $f: So), (iii) ruprt]ure Off densely ls.:jaCked
(At,=dt). Define avalanche dynamics such that the two set: ocked domains of grains near the surface, a'?d sding
of motion interact; macroscopic dynamics emerge as a coan ruptured domains and single grains. The first is a local

sequence of microscopic change, which sporadically and |Og¢o_metrical instapility; the others occur Wheﬂ a gravity or
cally brings the system into an unstable, critical state b)jrlctlon threshold is exceeded for surface grains and locked

exceeding geometric or force balance thresholds of stabilit)gralln domains. . . . :
In this state both forms of motion become possible, and ag In the case of free river meandermg_, SIX houndary condi-
the likelihood of each form of motion becomes equal, thet'o.ns appear to be necessary and sufficient for .the_syster_n. to
system may flick from one to the other at any infinitesimally(atXISt [A.']' W.heﬁ the SIX cond|t|ops are _present,_ five instabili-
small perturbation. This unleashes a macroscopic event (ﬂ‘ﬁs will arise: (i) turbulence instability causing coherent

local relaxation. The microscopic change is spatially global W structures, Wh'?h Ieao_l to incipient channel cross-section
asymmetry locally in straight and weakly curving channel

and temporally infinite, while the macroscopic motion is spa- hed5: (i) ch | " trv—flow feed

tially local, always confined to regions smaller than the scal eac|:< gi : (”). Ch anne crozs-ts]ec pen.a%_ymrne ry—l SW dee )

of the system, and temporally finite, contained in discret ack in a straight or curved ¢ an.r[ I (iii) channe end-
flow instability causing asymmetrical lateral eros@; (iv)

events. : - . :
Self-organized criticalit(SOQ refers to a tendency of closed Ioop instability causing river segments to be cut off
hen the river curves enough to meet it4&ff; and(v) neck

dissipative, dynamical systems to become self-organized b} tabilit . . f K sh ft »

avalanche dynamic&iscrete events clustered in time and VS "fl‘_h' ' )f/ causing r.egre;?.lon?c ?]ecﬂ s_dapeg gr ﬁ“ h.

spacg into a critical state that is independent of initial con- )- 'nhe |r_sft_ Is an instability of the fluid motion; the others
are instabilities of channel geomef{#].

ditions. The critical state combines global stability of the .
9 y For any SOC system, a set of instabilities generates

system(robustness and stationary fluctuatipnégth local in- ing & dd i F deri
stability [1]. Avalanche dynamics also gives rise to fractal opposing force aF ac't“or? and determi = FOr meandering
rivers, instabilitiegi)—(iii ) increaseS, while instabilities(iv)

(scale-invariant or -covarianstructures in time and space N
[1,2]. The behavior of SOC systems is summarized in Fig. 2&nd (V) decreaseS [7]. For grainpiles, measured by slope
angle, instability(i) increasesS, while instabilities(ii)—(iv)
decreases.
Il. COMPARISON OF THE MEANDERING RIVER AND
THE GRAINPILE AS DYNAMICAL SYSTEMS Ill. RIVER MEANDERING REPRESENTED

. . e AS A DYNAMICAL SYSTEM
Avalanche dynamics is caused by a set of instabilities. An

instability means that properties of the system accelerate The conclusions of this paper are largely based on the
away from a given previous state when the system is perSOC dynamics of meandering motipn]. This section pro-
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FIG. 1. Fluctuations of wavelength sinuosBy from simulated o & state
free meandering river. Sinuosity is the dimensionless parangeter (‘}; ! Subcritical
=L/l, whereL is the length of the river along its course between
two points and is the shortest length between the same points. The
quantititesL andl are measured in units of river width. Wavelength 0
sinuosity is measured over a single wavelength of river meandering ) State parameter S
c

(Fig. 9). The mean value i§, =5.85+3.87, close to the Kinoshita

S, of 2, which is the boundary point between the avalanche- FIG. 2. SOC dynamics. The smallest value $fthat allows

generating repeller and the SOC strange attraabrFigs. 7 and  avalanches to span the whole system is the critical state. The system

10(a)]. is globally independentf initial conditions(robust, i.e., resilient to
perturbationsin the sense that it will go to the critical state from

vides a detailed description of the meandering model usedny starting point. At the same time itliscally sensitiveto initial

River meandering migration is a consequence of erosion atonditions in the sense that any change of the initial conditions will

the outer bank of a river bend and deposition at the innegause a divergence of local trajectories within SOC.

bank [8]. If there is no net erosion or depositidne., a

steady state in terms of sediment supplied to and lost from

river reach then the average cross-section area of the whol ections is centered in the channel, no erosion takes place

reach will remain constant in time. This condition is com- that contributes to the meandering moti¢erosion may

mon in meandering rivers, suggesting that this steady-statgange the cross-sectional channel shape, but will not induce
condition is caused largely by the negative feedback effect Oésymmetry. In this state (Ug,) = (uso) = 0. Hence? can be
momentum conservation. Most bedload material eroded at aghproximated by N s

outer bank will be deposited on the next inner bdpkint _
bap downstream. It is therefore sufficient to describe the {=EuUgp. (4)

migration of a meandering river in terms of the erosion P'O°This linear relationship between bank erosion rate and the

cess at the outer banks. near-bank velocity fluctuation has been confirmed by empiri-

Figure 3 shows the coordinate system used in the follow¢, measuremeni®]. At the same timeli, will adjust in-

ing. The rate of erosiog at a channel bank is a function of giantaneously relative to the rate of channel migration; this

fficient E that is independent ofig;. When the thalweg
é)ath of highest flow rate in successive downstream cross

the near-bank depth-averaged downstream velagity feedback effect is one of the instabilities that drive the me-
_ 1 andering motiorfinstability (ii)].
¢={(Usp). (1) Ikeda, Parker, and Saw#8] obtained solutions to the
The near-bank velocity can be given as the sum of the Crossd_epth-averaged St. Venant equation for shallow water flow

sectional average flow velocity,, and the increment near gQlg\ ¥
the river bank: Uo= 20C,) )
{(ugp) = g(uso+ﬁsb)- 3] H Q ®
Since the cross-sectional area is approximately consiant, ° 2bU,
will be almost constant along the river at any given time, but
varies slowly in space around a reach-averaged velagjty center
which fluctuates in time with sinuosity as the river meanders line ¢
[Eq. (7)]. The incrementl,, depends on botk and time. If y
U, is small compared tag, Eq.(2) can be approximated by
the Taylor expansion b ]
_"5 X
d L
g(usb)zg(uso)‘l'% Usb: g(“sO)"'E(usO)ﬁsb, " Uso
s Usp=Uso o A
() -
Uso+Usp

where the erosion functioR(ugy) may depend on the aver-

age flow velocityug, as well as the resistance to erosion of '/::
the bank material. If the variation of, is sufficiently small,

the erosion function can be approximated by an erosion co- FIG. 3. Notation and variables.
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by solving the St. Venant equation for uniform flow along abe treated as an ordinary differential equation and may be
straight channel with the same overall slope as the meandesolved using an integrating factpt3]. At a sufficient dis-

ing river, using a small-perturbation approach to linearize theance froms=0 the solution takes the form

governing equations in the region around the uniform flow
solutions.Uy is the steady-state flow velocity of the straight
channel anH, the average deptl@ is the total volumetric
flow in the channel(discharge and | is the slope of the
flood plain. For a sinuous channel, the slope is smaller than
I, and so the reach-averaged flow velocity is lower. Define
sinuosity as

Cfuso
ho

Ugp=—buga+ [F2+ (A+A+1)]

X f Smax gxn(—2C;s' [ho)@(s—s')ds’.  (10)
0

Hencely,, is determined by the local curvature, with a cor-

S=—=2 rection arising from nearby upstream points, in the simulator
bl corresponding to a distanse- s/, (short-distance memory

effecd.

. The axisn, normal to the downstream direction at an

the length of a straight channel reach between the same e'ﬂ)%int along the channel center line, is always taken as ?11

p_()llr(ljts,thandl |shthe slopedof ;[he_ me?rllldermg thamel'hTh'sc easing toward the left bank when looking downstream
lese s the reach-averaged velocity of the meandering ¢ ann? ig. 3. The value ol obtained from either Eq8) or (10)
refers to the left bank, with the velocity increment at the
U=U,S 8, (7)  right bank then having the valueUsy. The curvatures is
positive or negative, depending on whether the river is curv-
lkeda, Parker, and Sawg8] found that St. Venant's equa- ing clockwise or counterclockwise. The value of, can
tion yields an expression for flow in a meander bend thatherefore be positive or negative, depending on whether it is
allows calculation of the near-bank velocity increment thatthe left- or the right-hand-side of the river that is being
determine<: eroded.
Lateral meandering migration of the channel increases lo-

wherelL is the length of the meandering channel redcis,

u fmsb_i_zﬁ CT cal curvature, giving a monotonically increasing relationship
0 9s he ~fsP @=1f(¢), which leads to an instability in the form of positive
_ ) feedback. However, the correction term for local geometry in
] u i iti i
_nl 2 %@ ~ Ys0 5 B Eqg. (10) (determined by bend entrance conditions at inflec-
bl ~Uso s +Co ho (FHATA— D), tion pointg complicates the nature of the instability by intro-

®) ducing competing interactions between neighboring bends.
This leads to frequent local and temporary quenching of in-

where the partial differential form represents the factthgt ~ Stability (ii), which nonetheless is fundamentally a positive
and@ are functions of botts and time. Hence the equation feedback interaction. _
describes change occurringsmat any instant in time. In Eq.  Equation (8) is a depth-averaged representation of the
(8), h, is the average depth of the channeljs the half- flow conditions. It therefore does not describe the cross-
width of the river, is the local curvature of the river center Sectional asymmetry of the channel shape due to point bars
line (Fig. 3 shows two measures of this paraméteand 6), and _a_\ltemate bars, Whl(_:h gives rise to g_noth__er essential in-
F=ug,/\ghy is the Froude numbeg is acceleration due to stability in the meandering proceﬁﬂstablllt_y (iii)]. Ikeda,
gravity, A is a proportionality constant in EqL2), andA is I?arker, and Saw4s] represented the coupling petween flow
a constant accounting for the momentum redistribution dudi€!d and the cross-sectional bed topography linearly:
to the secondary flow in bend40]. This helicoidal vortex
movement is the largest-scale coherent structure of turbulent
flow in meander bendgl1].

The friction coefficientC; used in Eq.(8) is defined by
the relationship

7(n)=Ahyon. (1D

As before h, is the average depth of the channg(n) is the
river bed elevation relative to some horizontal level, arid
the coordinate in the direction perpendicular to the center
7=u(u-v)¥C; (9) line (Fig. 3. Ais a positive constarithe “scour factor").
Equation(11) agrees with the experimental data[&#].
where 7, is the shear stress on the river bed in the down- Although this linear relationship gives a first-order repre-
stream direction and andv are the depth-averaged down- sentation of instability(iii), it is too simple to accurately
stream and transversal flow velocities in the charidél. describe the flow field-channel cross-section asymmetry
The friction coefficient depends on the bed form structurefeedback. Planforms generated from E). have been com-
and material on the river bed, but tends to vary within apared to the lateral migration of rivef$0]. A reasonable fit
relatively narrow range in meandering rivers. It may there-was found only if unrealistic values were assigned to the
fore be approximated by a constant, representing the averagarameters. The effect of these deviations from the natural
boundary friction. parameter ranges was to push the distribution of high flow
Althoughl,, and@ are functions of botls and time,u,,  velocity further toward the outer bank of the river. The prob-
is assumed to adjust instantaneously relative to the rate d€m is that the real interaction depends not only on curvature
channel migration. Hence, at any instant in time, 8y.can  but also on upstream flow conditiorfthe entrance condi-



56 FLUCTUATIONS AT THE SELF-ORGANIZED CRITICAL STATE 6713

tions into each bendThis local memory effect causes over- 120°  110°
deepening in parts of the bends compared to the topography * T
predicted by Eq(11).

Johannesson and Parké&f] achieved a more exact chan-
nel deformation response to variation in the flow field by
representing the interaction as three sediment transport rela-
tionships, assuming a slowly varying erodible bed: sediment
mass conservation

... 90°

an Qo dds d[(1+nbw)q,] 0

7 " 1inbe :E+—an -0 12 -
the downstream sediment transport relationship FIG. 4. Solutions of permanent form of E(L7). Flow is from

M left to right. From[13].
4= o] 2 (13
R VR wherec=¢/U and¢ is the downstream migration rate of
) ] ) perturbations.

and the transverse sediment transport relationship From Eq.(16), Parker, Sawai, and Ikeda6] obtained an

analytical solution, termed the Kinoshita curve. et de-
-B——. (14) note the arc meander wavelength atd 27H,/\, denote
Js Uso  ToUso b on the dimensionless arc wave numbey.is an angle amplitude
taken to be small,

Gn_Uno Vg ho dn

In Egs.(12)—(14), v, is the depth-averaged transversal flow
velocity, gs is the downstream volumetric sediment transport 1 A

rate,q, is the transversal volumetric sediment transport rate, 0= 6ySing + 498 19 sin3¢+ 178 cos3p |, (17)
Vg is a term describing the secondary flow in bentls de-

scribes the vertical flow velocity profilgogarithmig, andU where¢ = «s. The family of solutions given by Eq17) are

is the reach average of the flow velocily,. Qqisafunc-  ioeq in Fig. 4 forA=2.89, found to be a characteristic
tion relating the total sediment discharge in the reach to _value by empirical measuremer{@]. Parker and Andrews
The constanpB expresses a transverse force balance reIat|0[113] demonstrated that the solutida?) is not stable, i.e.

on a sediment particle moving along an inclined bE8.10.  pengs will grow to cutoff, and the final meandering dynam-
Equation(13) introduces variation ofis, into the model as a ¢ will depend strongly on the cutoff process.

consequence of slow variation in the cross-sectional area cioff generates a particular type of bend, the neck shape
causgd by sedimen_t transport. This relationship is part of ?Fig. 5. The model predicts that bends formed by cutoffs
negative feedback interaction that causes a tendency t0 g} recede by deposition on the outside and erosion on the
approximately constant cross-sectional area. The i) jside of the bendinstability (v)]. This is caused in the

is therefore.close tc_) unity and EQL3) is roughly I|_near. model by the migration derived from E¢g) or (10), where

. Meandering motion causes the river to occasionally meek,ssion of the inner bank is due to a combination of the
itself, which invariably result in cutoff of a loop-shaped seg-gntrance condition into the bend, represented explicitly in
ment of the r|ve_|[|nstabll|ty (iv)]. This neck cutoff phenom- Eq. (10) as the term for local upstream effect, and the par-
enon was studied by Parker and AndreMs]. Curvature {icy1ar geometry of the bend itself. Necks subside until local
@(s,t) at a given time and positios on the center line, ¢ypyature falls below a threshold due to change of shape.
wheres is the distance along the center line from an original  Gjve the amount of time required for a bend to increase or

point (also on the center linemay be given as decrease in amplitude from an initial value &f to a final
26 value of § as Ar,. Parker and Andrew§13] found this
~__ 77 interval as
w==—c (15
where 6 is the angle of local channel center line deflection Neck
measured relative to an external frame of referencg)( shape
(Fig. 3. Many other measures of curvature are possible;
however, it was found by Sun, Meakin, antsSand 12] that
the actual measure used does not affect the simulation out-
come. Using definitio15) and Eq.(8), Parker, Sawai, and
Ikeda[16] found that Meander
cutoff
Uso &% - AC| - 2 90 2, % ¢ sing=0
U a2 |©° flu ds tg ¢sne=o FIG. 5. Local river neck shape &t (after cutofj has the same

(16 sinuosity as a semicircl&y= /2.
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AT, , (18 FIG. 7. Avalanche dynamics of free river meandering repre-
sented as a trajectory of wavelength sinuosity in state space, corre-

sponding to the time-series interval in Fig. 1.

1 [l 6B+
128 " 60+ (6r16)2

where

in terms of two forces or force complexes with opposite di-
(19) rection, one increasing and one decreasngne forceF 4

=f(ds/dt) is caused by the slow, continuous driving process

of the system; the othd¥,= f(As/dt) is caused by discrete
ke=(2A)Y*C; andk=2mH,/\ are wave numbers. Bends events, but may also involve secondary, continuous changes:
are stable wheB= — %. Subsidence occurs for smaller val-

ues and growth of bends when values are laf§éay. 6).

ke—k

v

S(t)=Fq4(v,t)—F4(v,s,t),

wheres=(Xy,X5,X3) iS spacet is time, andv is the rate of
driving for the system in questioft.y is evenly distributed in
space and therefore only a function of time and rate of driv-
The state paramet&(t) of a dynamical system measures ing. F, is localized in space and a function of local spatial
the state of the whole system such tlik®/dt and AS/dt  properties of the system and is therefore also a function of
represent all microscopic and macroscopic motion within thespace. Hence
system. The critical state corresponds exactly to one and
only one value ofS. Avalanche dynamics may be repre-
sented in state space as a trajectory of chand&(tih (Fig.
7. Which of the forces increas&; F', and which decreases it,
Several measures may act as the state parameter forFd, depends on how is defined to measure the state of the
given system. For a meandering river the simplest possibleystem and bott8(t)=F—F.=F.—F carry exactly the
state parameter is the sinuosBy=L/I, whereL is the size same information content. In any case, the actiok pbn S
of the system(length of the river along its course between increases the potential energy in the system Bpdacts to
two pointg and | its dimensional sparithe straight line convert potential energy into kinetic energy and heat.
length between the same two pointsl<S<w® and the
critical state is given by5=m. A more complex possible
state parameter is the fract@imilarity) dimension. For a
two-dimensional grainpile, the simplest state parameter is the
whole slope angle between the apex and the edge of the pile. With reference to Eq(20), let us define the state param-
Alternatively, a sinuosity equivalent measure may be useeter value before and after a single avalandi® as S"o"
such thatL is the detailed length of the slope ahds the and 3'0‘”, wherei refers to the time; of occurrence of the
straight-line distance from apex to the edge of the pile. It isavalanche. The driving force is constant and therefore has a
not important which measure is used since any state parantiinear, cumulative effect on sinuosity:
eter by definition will record the fluctuations of the system. |
shall assume in the following th&refers to sinuosity when
the system is a river and to a whole slope angle when itis a
grainpile. wherei—1 refers to the last occurring avalanchie; 1<t
Fluctuations of the state paramefit) can be expressed <i. In the case of river meandering, sis the gradient of

IV. THE STATE PARAMETER OF SELF-ORGANIZED
CRITICAL SYSTEMS

S(t)=F}(v,t)—Fi(v,s,1). (20)

V. DETERMINISTIC REPRESENTATION
OF FLUCTUATIONS AT THE CRITICAL STATE

Fi=S"+0ut, (21)
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the plain on which the river flows. This is a measure of the(The neck shape regresses and at the same time changes
strength of the driving force and therefore determines howshape. The relaxation stops when the shape has been trans-
fastF) increasesS; thusv=b sinZa, whereb is a positive  formed back to a meander shape, i.e., a shape that allows the
constant. The action df, is given by fastest flow path to follow the outer bank of the bgnéis-
sume the simplest case of constant relaxatenosion rate
Fi=Fl=fp(v,st)+fc(t)=1(At)AS+fc(t), (220  of the neck axis during the decay period. A constant rate is
] ) equivalent to an exponential decay function of the neck
where fp(v,s,t) is a discrete(avalanche component and  ghane as a whole. The contribution fg(t) to the sinuosity
fc(t) any secondary continuous component caused by thg¢ the \whole systenS=L/I depends on the length span of

avalanche process. _ o the instability N=2#w relative to the linear length of the
Each avalanche occurs in a brief, finite time interda), systemlw or N/lw =2/l

=t;—t;, At,<At, whereAt is the time interval between
successive avalanches; hence avalanches are discrete events 20 1 k(t—t))
and avalanche dynamics is a discontinuous pro¢esthe fe(t)= T2 exp{— 2 AT }
case of river meandering, each avalanche takes the form of a N

cutoff event that is infinitesimal in duratioht,=dt, buton |t seems reasonable to allow the possibility of a variable rate
grainpiles avalanches occur during finite time intervals of |ocal erosion (relaxation of the neck shapeley/dt,
AS=AS,, represents the avalanche occurring during timéyhich is measured relative to a characteristic mean erosion

Ata n=tjn—ti,n, Where the subscript is thenth successive rate ofds/dt=1 over the same interval when the neck shape
avalanche. Given a time interval between two successiVg not present. Hence

avalanched\t;=At; ,=t; ,—t; ,_1, then we may define an

indicator functionl (At;)={0,1}, 0 if AS is a future event w2 1dey t—t;
and 1 whert=t;: =70 =54t Ay’
I(At)= 2 tin-1<t<tin For constant erosion ratée,/dt=Kk. But if dey/dt also

t=t. relaxes from a high initial valuee®{dt>1 to the relative

. . . . . value characteristic of erosion due to the driving force
This requires the time interval between successive ava,

lanchesAt; to be known while the present timeis still de/dt=1, thendey/dt may take the form

inside At; (however, this knowledge is only required just de demax 1t—t.
. . . N N i
beforet=t;). The necessary information comes from details —_— = ex;{ - = —}
of the spatially extended dynamics of the system, as does dt dt 2 Aty
information aboutA S.
For any general SOC system, temporal fluctuations VI. STATE-SPACE REPRESENTATION
around the critical state occur according to OF SOC DYNAMICS
S(t)=Fl(v,t)=FL(v,s1) The temporal fluctuations of any SOC system can be rep-
resented as a trajectory in the state space spanné&iaoy
={SM + vt} —{I(At)AS +f(D)}, (23)  time. S(t) is only partly known, but ais(t) time series from

simulation of the system may be used to reconstruct the tra-

where the ternfc(t) may or may not be presefitis absent, jectory in a state space spanned by previuss present
for instance, in SOC grainpiles without creep relaxation aftefcontaining the time dimension implicitiy18]. If all trajec-
avalanches The directions ofy andF, are always oppo- tories in a definite region of state space approach a particular
site. In time, they are coupled only through the resetting of |imiting point set ag goes to infinity, then that point set, or
by S, which derives fromAS,_,;=S"!—S . The fixed point, is called amttractor. Once at the attractor, the
physical structure of the coupling is located in the spatialrajectory is not displaced. The set of initial conditions yield-
domain. ing such trajectories is the basin of attractianfinite region

For river meanderind,c(t) is a continuous element 6,  of phase space surrounding the attract@nother invariant
due to the neck instabilityinstability (V)]. It reduces the set, the repeller, has the opposite effé&epellerscause di-
increase ofS immediately after avalanches, causing periodsvergence by expelling or deflecting all trajectories into a ba-
of increase to become weakly nonlinear. In SOC systemsin of repulsion. An attractor is atablefixed point in the
without this secondary element, a linear continuous changsense that trajectories that start near it are drawn toward it. A
of the state parameter is common; [cf,17]. repeller is anunstablefixed point in analogy with a ball

In the river meandering case, simulations show fiadt) rolling off the top of a hill. The top of the hill is an equilib-
is an exponential decay function. Irrespective of the magnifium point; the trajectory will not be displaced when exactly
tude of AS;, the neck residugfFig. 5 may be considered to at the point, but the situation is unstable: Any infinitesimal
span a constant river lengtfor a given river widthw) irre-  perturbation causes the ball to roll away.
spective of the size of the cutoff loop. Within this span, the Fixed (invariany points or point sets in state space are
unstable shape has a local sinuosBly=7/2 immediately defined bydSdt=0 [18]. For any system, a state parameter
after the cutoff. may be found such that the minimum valB8g;, is a fixed

During neck relaxation, this sinuosity decays to a lowerpoint. For example, a flat grainpi®=0 corresponds to an
thresholdSy=~1.3 over a constant time spakty=t;—ty. invariant point sinceS,,;, is unchanged by perturbatiofad-
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dt
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FIG. 8. Left, semicirclesS, = m/2; right, Kinoshita shapeS, ‘ ‘ (b)
=2. 1 0 0 :
Sic Sy 5

dition of grains on an infinite surface. A straight chanrel FIG. 9. SOC state-space dynamics. The attractor is shown as a

=1 is also a fixed point since differentidbend-initiating  ghaded areaa) River meandering. Sinuosity across one meander
deformations does not occlin this geometryif the flow is  \yavelength (b) Grainpile, using the whole slope angle as the state

Iamina_lr[19]. _ ) ) ) parameter, measured in radians.
A fixed point may be stabldattracting trajectorigsor . . _ o
unstable(repelling trajectories[18]: for dSdt=0, and active. In state space, this means 83as located within

the basin of repulsion o8,,. If instability (i) is stabilized,

the dynamics of5, will also die down. Assume such a frozen
d S?/dt2< 0=>stable (attractoy, state and then introduce an infinitesimally small perturbation.
If 2 7<S, <6, if a point of instability has appeared, and if
the perturbation occurs exactly at this point, repulsion will
occur. Hence this sinuosity region contains an unstable, fixed
set. If 1<S, <2, an infinitesimally small perturbation will
not cause any sudden change; hence this interval as a whole
is a stable(attracting fixed set. The span of the attracting
region is the triangular space between the poifitsl),

dS$?/dt?>> 0= unstable(repelle).

To any fixed pointS, there is a surrounding basin of attrac-
tion or repulsion

SAl[Sy<(S+dS)<S]O[Sy>(S+dS) >3], (2m,2m), and(1,2m) [Fig. Aa)].
{SallSo=( )< SIS ( )>Sl The simplest state parameter of a two-dimensional SOC
{SRI[Sp<S<(S+d9]O[Sy>S>(S+d) ]} grainpile is the angle between the apex and the edge of the

pile. The critical, minimally stable angle is 43based on

Swin is always a repeller fods/dt with {Sg} extending either data in[3]). The pile will locally build above this angle due
to S, or any value ofS. The flat grainpile corresponds to an © instability (i), but these slopes are unstable, and deep,
unstable fixed point since instabilit§) always moves the Slide-type avalanchefinstabilities (iii) and (iv)] bring the
system away from it until it reacheS;. For meandering Pile angle to the angle of slidingapproximatelys rad or
rivers, since instability(ii) arises spontaneously in any 0Wer, depending of the momentum of the sliding mass. Any
straight channel when flow is intermittently turbuldite], ~ SIOPe interval withS above this value is unstable to rupture
S, is unstable; the system will either stay on(iaminar ~ ©OF sliding of grain-locked domains and rolling of surface

flow) or move away from itturbulent flow. {Sg} extends to ~ 9rains; hence all geometries represented in theSget{S
anyS. >45°} repel the macroscopic motiahS/dt [Fig. Ab)].

Instability (iii) (cutoff events occurs spontaneously at [N Poth the river and the grainpile, tHgy, repeller of
points of closure when the river forms a loop. The simplesfMicroscopic motion is caused directly by external forcing
(and also most commorshape of closed loops is the asym- undgr a range of boundary conditions anahdependenbf .
metric Kinoshita shape, which has a wavelength sinuositY internal factors of the system. Also, avalanche motion is
S,=2m (S, refers to the minimum value df that allows deflection of trajectories by a repelling point or set and re-
avalanches to occlf7] (Fig. 8). Any river segment witts, quires the presence of the independent repe_ller. A state-space
above this value is unstable; hence all geometries reprdl€OMetry occurs such that these two opposing repéiters
sented in the seB,={S,=27} repel the macroscopic mo- for. each type.of mot'lo)ﬁhave partially overlapping basins.
tion As/dt. The repelling action occurs as discontinuities of 1MS Overlapping region encloses a strange attre@o;22.

the trajectory where the system is instantaneously transferred 11iS attractor is a temporal projection of the complete
to some point iN(S,g|S, <27} (Fig. 7) spatiotemporal strange attractor of the system, which is the

m%ctual grainpile surface or river planforfthe river stays
é/vithin a bounded domain, the meander belt, without ever
epeating or intersecting itselfif meandering is constrained

Frequently in free meandering, meander bends beco
cumuliform, i.e., with small meanders superimposed on
larger one. Cumuliform bends tend to be broken up by th o .
cutoff of the more rapidly growing small bends inside it andPY Valley geometryF, may be prevented from arising, in

thus generate an avalanche of Kinoshita cutoffs, but they af¢Nich case fractal geometry does not emerge. Instead, self-
iprganization reaches only a periodic symmetry and the at-

sinuosities up to approximatelyz6(the largest value ob- tractor becomes a limit cycleig]

served in simulations as well as the largest cutoffs possible
in the system.

The avalanche repell&, is indirectly caused by the ac- Emergence of the SOC state in any dynamical system
tion of S, and therefore ariséand only if S, iS present  requires three necessry conditions.

VIl. CONCLUSION
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(i) The presence of two antagonistic forceg] andF,|, andp is the momentum of the whole system. The velocity of
such thatF47 causes the motiodSdt andF,| causes the driving for the whole systemyy, is constantgiven constant
motion AS/dt. discharge of the river and a constant rate of addition of

(i) A one-way contingency between the two forces, suchgrains to the pile Numerical simulations of river meander-
that F, is always contingent o4, but F4 is not contingent ing under constant discharge have confirmed that the total
onF,. rate of change due tB4 stays constant while local erosion

(ii ) Both forces must act as repellers in state space, sudfates vary from one point to anothét]. Each cutoff event of
thatF4 repelsdSdt andF, repelsAS/dt. the river is caused directly by the meandering motion, and

It follows from conditions(i) and(ii) thatF 4 is caused by each grain avalanche directly by the addition of grains. Thus,
external driving and~, arises internally in the system. Con-

dition (ii) means thaF, if, and only if, F4. (F, cannot act in _Ap  Am Am

the system unlesB4 acts in the system Contingency im- Fal =Gt~ Voar where FT (29
plies dependence, but not necessarily a monotonic functional

relationshipF,=f(F4). The contingency is one-way, be- or

cause althouglfry in most SOC systems will be influenced

by F,, it may well be entirely independent &F,. The ab- Am dp Am Am

sence of contingency df4 on F, means thafF, does not Fal=Falgm=at am Where 4,<0 (20

have to be present fd¥, to act indefinitely]However, ifF,

does not arise, the dynamics is no longer in the SOC statén accordance with condition@) and (ii).

and S—« [7]. Violation of SOC in the absence &, is If the forces are acting as attractors instead of repellers,
stated as conditiofi).] If the two forces were both indepen- the dynamics will lead to a fractal basin boundary instead of
dent of each other, they could still be in a balance to form aan SOC strange attractor. However, more complex mixed
stationary state, but this steady state would not be robusfases will still lead to SOC. In these cases, each force acts as

(independent of initial conditionsTo the contrary, it would
require careful fine-tuning of parameters.

The physical meaning of conditiofii) is the same for
both the two systems considered. Increasé& aheans that
the mass of the system increagd® river is getting longer
and the grainpile highg¢rHence

dp dm

dm
FqT Zazvda, where E>O (29

an attractor for one type of motion and a repeller for the
other. Condition(iii) requires only that either force must
have repelling action for different types of motion.
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