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Fluctuations at the self-organized critical state
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Department of Earth Sciences, Cambridge University, Downing Street, Cambridge CB2 3EQ, United Kingdom

~Received 22 July 1997!

Avalanche dynamics is defined as coupled internal motion at two separate time scales. The state parameter
S(t) measures the amount of tension or potential energy stored in the system. Fluctuations ofS(t)5Fd

↑2Fa
↓

are caused by the actionFd on S of the driving force, giving rise to slow, continuous motion, and the
antagonistic actionFa of a relaxation force causing rapid, discrete events~avalanches!. The arrows indicate the
directions of the forces~increase or decrease!. A state parameter may be chosen such that both forces act as
repellers in state space. Self-organized criticality~SOC! emerges whenFa is an internal force that exists if, and
only if, Fd is present. When this contingency condition is fulfilled, the two antagonistic forces trap the system
trajectory inside a SOC attractor, which is a state-space region of overlapping basins for the two types of
motion. The conclusions are based primarily on the case of river meandering dynamics, described in the paper.
@S1063-651X~97!07611-3#

PACS number~s!: 64.60.Lx, 05.40.1j
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I. AVALANCHE DYNAMICS

Avalanche or cascade dynamicsarises in systems of mat
ter that allow internal motion at more than one spatial a
temporal scale~Fig. 1!. Give a time scale with infinitesima
resolutiondt and define two nonoverlapping sets of moti
dS/dt ~microscopic! and DS/dt ~macroscopic! such that
dS/dt is continuous andDS/dt consists of discontinuou
events ~avalanches, cascades!, each occurring over time
spansDta that are either instantaneous or time extend
(Dta>dt). Define avalanche dynamics such that the two s
of motion interact; macroscopic dynamics emerge as a c
sequence of microscopic change, which sporadically and
cally brings the system into an unstable, critical state
exceeding geometric or force balance thresholds of stabi
In this state both forms of motion become possible, and
the likelihood of each form of motion becomes equal, t
system may flick from one to the other at any infinitesima
small perturbation. This unleashes a macroscopic even
local relaxation. The microscopic change is spatially glo
and temporally infinite, while the macroscopic motion is sp
tially local, always confined to regions smaller than the sc
of the system, and temporally finite, contained in discr
events.

Self-organized criticality~SOC! refers to a tendency o
dissipative, dynamical systems to become self-organized
avalanche dynamics~discrete events clustered in time an
space! into a critical state that is independent of initial co
ditions. The critical state combines global stability of t
system~robustness and stationary fluctuations! with local in-
stability @1#. Avalanche dynamics also gives rise to frac
~scale-invariant or -covariant! structures in time and spac
@1,2#. The behavior of SOC systems is summarized in Fig

II. COMPARISON OF THE MEANDERING RIVER AND
THE GRAINPILE AS DYNAMICAL SYSTEMS

Avalanche dynamics is caused by a set of instabilities.
instability means that properties of the system accele
away from a given previous state when the system is p
561063-651X/97/56~6!/6710~9!/$10.00
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turbed ~sensitive dependence on initial conditions!. Con-
versely, a stable system will return to its previous state a
perturbation. When not expressed, instabilities are presen
intrinsic, potential, or possible forces.

Four instabilities arise in SOC grainpiles~the simplest
case consists of even-shaped and -sized dry, cohesio
grains with high surface friction@3#!: ~i! Grain locking~lo-
cal friction! forces vertical buildup~stacking! rather than
horizontal spreading,~ii ! rolling of surface grains at the
angle of repose (S5Sc), ~iii ! rupture of densely stacke
~locked! domains of grains near the surface, and~iv! sliding
of ruptured domains and single grains. The first is a lo
geometrical instability; the others occur when a gravity
friction threshold is exceeded for surface grains and loc
grain domains.

In the case of free river meandering, six boundary con
tions appear to be necessary and sufficient for the syste
exist @4#. When the six conditions are present, five instab
ties will arise: ~i! turbulence instability causing cohere
flow structures, which lead to incipient channel cross-sect
asymmetry locally in straight and weakly curving chann
reaches@5#; ~ii ! channel cross-section asymmetry–flow fee
back in a straight or curved channel@6#; ~iii ! channel bend–
flow instability causing asymmetrical lateral erosion@6#; ~iv!
closed loop instability causing river segments to be cut
when the river curves enough to meet itself@7#; and~v! neck
instability causing regression of neck shape after cutoff~Sec.
V!. The first is an instability of the fluid motion; the othe
are instabilities of channel geometry@4#.

For any SOC system, a set of instabilities generatestwo
opposing forcesthat act on and determineS. For meandering
rivers, instabilities~i!–~iii ! increaseS, while instabilities~iv!
and ~v! decreaseS @7#. For grainpiles, measured by slop
angle, instability~i! increasesS, while instabilities~ii !–~iv!
decreaseS.

III. RIVER MEANDERING REPRESENTED
AS A DYNAMICAL SYSTEM

The conclusions of this paper are largely based on
SOC dynamics of meandering motion@7#. This section pro-
6710 © 1997 The American Physical Society
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56 6711FLUCTUATIONS AT THE SELF-ORGANIZED CRITICAL STATE
vides a detailed description of the meandering model us
River meandering migration is a consequence of erosio
the outer bank of a river bend and deposition at the in
bank @8#. If there is no net erosion or deposition~i.e., a
steady state in terms of sediment supplied to and lost fro
river reach! then the average cross-section area of the wh
reach will remain constant in time. This condition is com
mon in meandering rivers, suggesting that this steady-s
condition is caused largely by the negative feedback effec
momentum conservation. Most bedload material eroded a
outer bank will be deposited on the next inner bank~point
bar! downstream. It is therefore sufficient to describe t
migration of a meandering river in terms of the erosion p
cess at the outer banks.

Figure 3 shows the coordinate system used in the follo
ing. The rate of erosionz at a channel bank is a function o
the near-bank depth-averaged downstream velocityusb :

z5z~usb!. ~1!

The near-bank velocity can be given as the sum of the cr
sectional average flow velocityus0 and the increment nea
the river bank:

z~usb!5z~us01ũsb!. ~2!

Since the cross-sectional area is approximately constantus0
will be almost constant along the river at any given time, b
varies slowly in space around a reach-averaged velocityU,
which fluctuates in time with sinuosity as the river meand
@Eq. ~7!#. The incrementũsb depends on boths and time. If
ũsb is small compared tous0, Eq.~2! can be approximated b
the Taylor expansion

z~usb!5z~us0!1
dz

dusb
U

usb5us0

ũsb5z~us0!1E~us0!ũsb ,

~3!

where the erosion functionE(us0) may depend on the aver
age flow velocityus0 as well as the resistance to erosion
the bank material. If the variation ofus0 is sufficiently small,
the erosion function can be approximated by an erosion

FIG. 1. Fluctuations of wavelength sinuositySl from simulated
free meandering river. Sinuosity is the dimensionless parametS
5L/ l , whereL is the length of the river along its course betwe
two points andl is the shortest length between the same points.
quantititesL andl are measured in units of river width. Waveleng
sinuosity is measured over a single wavelength of river meande
~Fig. 9!. The mean value isS̄l55.8563.87, close to the Kinoshita
Sl of 2p, which is the boundary point between the avalanc
generating repeller and the SOC strange attractor@cf. Figs. 7 and
10~a!#.
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efficient E that is independent ofus0 . When the thalweg
~path of highest flow rate in successive downstream cr
sections! is centered in the channel, no erosion takes pl
that contributes to the meandering motion~erosion may
change the cross-sectional channel shape, but will not ind
asymmetry!. In this statez(usb)5z(us0)50. Hencez can be
approximated by

z5Eũsb . ~4!

This linear relationship between bank erosion rate and
near-bank velocity fluctuation has been confirmed by emp
cal measurements@9#. At the same time,ũsb will adjust in-
stantaneously relative to the rate of channel migration;
feedback effect is one of the instabilities that drive the m
andering motion@instability ~ii !#.

Ikeda, Parker, and Sawai@8# obtained solutions to the
depth-averaged St. Venant equation for shallow water flo

U05S gQI0
2bCf

D 1/3

, ~5!

H05
Q

2bU0
~6!

e

g

- FIG. 2. SOC dynamics. The smallest value ofS that allows
avalanches to span the whole system is the critical state. The sy
is globally independentof initial conditions~robust, i.e., resilient to
perturbations! in the sense that it will go to the critical state from
any starting point. At the same time it islocally sensitiveto initial
conditions in the sense that any change of the initial conditions
cause a divergence of local trajectories within SOC.

FIG. 3. Notation and variables.
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6712 56HANS-HENRIK STO” LUM
by solving the St. Venant equation for uniform flow along
straight channel with the same overall slope as the mean
ing river, using a small-perturbation approach to linearize
governing equations in the region around the uniform fl
solutions.U0 is the steady-state flow velocity of the straig
channel andH0 the average depth.Q is the total volumetric
flow in the channel~discharge! and I 0 is the slope of the
flood plain. For a sinuous channel, the slope is smaller t
I 0 and so the reach-averaged flow velocity is lower. Defi
sinuosity as

S5
L

l
5

I 0

I
,

whereL is the length of the meandering channel reach,l is
the length of a straight channel reach between the same
points, andI is the slope of the meandering channel. Th
yields the reach-averaged velocity of the meandering cha
as

U5U0S21/3. ~7!

Ikeda, Parker, and Sawai@8# found that St. Venant’s equa
tion yields an expression for flow in a meander bend t
allows calculation of the near-bank velocity increment th
determinesz:

us0

]ũsb

]s
12

us0

h0
Cfũsb

5bF2us0
2 ]ṽ

]s
1Cfṽ

us0
2

h0
~F21A1As21!G ,

~8!

where the partial differential form represents the fact thatũsb
and ṽ are functions of boths and time. Hence the equatio
describes change occurring ins at any instant in time. In Eq
~8!, h0 is the average depth of the channel,b is the half-
width of the river,ṽ is the local curvature of the river cente
line ~Fig. 3 shows two measures of this parameter,c̃ andu!,
F5us0 /Agh0 is the Froude number,g is acceleration due to
gravity, A is a proportionality constant in Eq.~12!, andAs is
a constant accounting for the momentum redistribution
to the secondary flow in bends@10#. This helicoidal vortex
movement is the largest-scale coherent structure of turbu
flow in meander bends@11#.

The friction coefficientCf used in Eq.~8! is defined by
the relationship

ts5u~u•v!1/2Cf , ~9!

where ts is the shear stress on the river bed in the dow
stream direction andu and v are the depth-averaged dow
stream and transversal flow velocities in the channel@12#.
The friction coefficient depends on the bed form struct
and material on the river bed, but tends to vary within
relatively narrow range in meandering rivers. It may the
fore be approximated by a constant, representing the ave
boundary friction.

Although ũsb andṽ are functions of boths and time,ũsb
is assumed to adjust instantaneously relative to the rat
channel migration. Hence, at any instant in time, Eq.~8! can
er-
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be treated as an ordinary differential equation and may
solved using an integrating factor@13#. At a sufficient dis-
tance froms50 the solution takes the form

ũsb52bus0ṽ1
bCfus0

h0
@F21~A1As11!#

3E
0

smax8
exp~22Cfs8/h0!ṽ~s2s8!ds8. ~10!

Henceũsb is determined by the local curvature, with a co
rection arising from nearby upstream points, in the simula
corresponding to a distances2smax8 ~short-distance memory
effect!.

The axisn, normal to the downstream direction at an
point along the channel center line, is always taken as
creasing toward the left bank when looking downstre
~Fig. 3!. The value ofũsb obtained from either Eq.~8! or ~10!
refers to the left bank, with the velocity increment at t
right bank then having the value2ũsb . The curvatureṽ is
positive or negative, depending on whether the river is cu
ing clockwise or counterclockwise. The value ofũsb can
therefore be positive or negative, depending on whether
the left- or the right-hand-side of the river that is bein
eroded.

Lateral meandering migration of the channel increases
cal curvature, giving a monotonically increasing relationsh
ṽ5 f (z), which leads to an instability in the form of positiv
feedback. However, the correction term for local geometry
Eq. ~10! ~determined by bend entrance conditions at infle
tion points! complicates the nature of the instability by intro
ducing competing interactions between neighboring ben
This leads to frequent local and temporary quenching of
stability ~ii !, which nonetheless is fundamentally a positi
feedback interaction.

Equation ~8! is a depth-averaged representation of t
flow conditions. It therefore does not describe the cro
sectional asymmetry of the channel shape due to point
and alternate bars, which gives rise to another essentia
stability in the meandering process@instability ~iii !#. Ikeda,
Parker, and Sawai@8# represented the coupling between flo
field and the cross-sectional bed topography linearly:

h̃~n!5Ah0ṽn. ~11!

As before,h0 is the average depth of the channel,h̃(n) is the
river bed elevation relative to some horizontal level, andn is
the coordinate in the direction perpendicular to the cen
line ~Fig. 3!. A is a positive constant~the ‘‘scour factor’’!.
Equation~11! agrees with the experimental data of@14#.

Although this linear relationship gives a first-order repr
sentation of instability~iii !, it is too simple to accurately
describe the flow field-channel cross-section asymme
feedback. Planforms generated from Eq.~8! have been com-
pared to the lateral migration of rivers@10#. A reasonable fit
was found only if unrealistic values were assigned to
parameters. The effect of these deviations from the nat
parameter ranges was to push the distribution of high fl
velocity further toward the outer bank of the river. The pro
lem is that the real interaction depends not only on curvat
but also on upstream flow conditions~the entrance condi-



r-
p

-
by
re
e

w
or
te

tio

re
f

o

e
g

a

on

le

o

f

ic

m-

ape
ffs
the

he
in

ar-
cal
.
or

56 6713FLUCTUATIONS AT THE SELF-ORGANIZED CRITICAL STATE
tions into each bend!. This local memory effect causes ove
deepening in parts of the bends compared to the topogra
predicted by Eq.~11!.

Johannesson and Parker@10# achieved a more exact chan
nel deformation response to variation in the flow field
representing the interaction as three sediment transport
tionships, assuming a slowly varying erodible bed: sedim
mass conservation

]h

]t
1

Q0

11nbṽ H ]qs

]s
1

]@~11nbṽ !qn#

]n J 50, ~12!

the downstream sediment transport relationship

qs5qs0Fus0

U GM

, ~13!

and the transverse sediment transport relationship

qn

qs
5

vn0

us0
1

n0

T0us0
2b

h0

b

]h

]n
. ~14!

In Eqs.~12!–~14!, vn0 is the depth-averaged transversal flo
velocity,qs is the downstream volumetric sediment transp
rate,qn is the transversal volumetric sediment transport ra
n0 is a term describing the secondary flow in bends,T0 de-
scribes the vertical flow velocity profile~logarithmic!, andU
is the reach average of the flow velocityus0 . Q0 is a func-
tion relating the total sediment discharge in the reach toU.
The constantb expresses a transverse force balance rela
on a sediment particle moving along an inclined bed@15,10#.
Equation~13! introduces variation ofus0 into the model as a
consequence of slow variation in the cross-sectional a
caused by sediment transport. This relationship is part o
negative feedback interaction that causes a tendency t
approximately constant cross-sectional area. The ratious0 /U
is therefore close to unity and Eq.~13! is roughly linear.

Meandering motion causes the river to occasionally m
itself, which invariably result in cutoff of a loop-shaped se
ment of the river@instability ~iv!#. This neck cutoff phenom-
enon was studied by Parker and Andrews@13#. Curvature
ṽ(s,t) at a given time and positions on the center line,
wheres is the distance along the center line from an origin
point ~also on the center line!, may be given as

ṽ52
]u

]s
, ~15!

whereu is the angle of local channel center line deflecti
measured relative to an external frame of reference (x,y)
~Fig. 3!. Many other measures of curvature are possib
however, it was found by Sun, Meakin, and Jo”ssang@12# that
the actual measure used does not affect the simulation
come. Using definition~15! and Eq.~8!, Parker, Sawai, and
Ikeda @16# found that

us0

U

d2u

ds2 1Fc cosu2ACf S us0

U D 2G du

ds
12Cf

us0

U
c sinu50,

~16!
hy
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where c5 c̃/U and c̃ is the downstream migration rate o
perturbations.

From Eq.~16!, Parker, Sawai, and Ikeda@16# obtained an
analytical solution, termed the Kinoshita curve. Letla de-
note the arc meander wavelength andk52pH0 /la denote
the dimensionless arc wave number.u0 is an angle amplitude
taken to be small,

u5u0sinf1u0
3F 1

192
sin3f1

A2A

128
cos3fG , ~17!

wheref5ks. The family of solutions given by Eq.~17! are
plotted in Fig. 4 forA52.89, found to be a characterist
value by empirical measurements@8#. Parker and Andrews
@13# demonstrated that the solution~17! is not stable, i.e.,
bends will grow to cutoff, and the final meandering dyna
ics will depend strongly on the cutoff process.

Cutoff generates a particular type of bend, the neck sh
~Fig. 5!. The model predicts that bends formed by cuto
will recede by deposition on the outside and erosion on
inside of the bend@instability ~v!#. This is caused in the
model by the migration derived from Eq.~8! or ~10!, where
erosion of the inner bank is due to a combination of t
entrance condition into the bend, represented explicitly
Eq. ~10! as the term for local upstream effect, and the p
ticular geometry of the bend itself. Necks subside until lo
curvature falls below a threshold due to change of shape

Give the amount of time required for a bend to increase
decrease in amplitude from an initial value ofu0 to a final
value of uF as Dt r . Parker and Andrews@13# found this
interval as

FIG. 4. Solutions of permanent form of Eq.~17!. Flow is from
left to right. From@13#.

FIG. 5. Local river neck shape att i ~after cutoff! has the same
sinuosity as a semicircle;SN5p/2.
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6714 56HANS-HENRIK STO” LUM
Dt r5
1

12b
lnF ~uF /u0!2~6b11!

6u1~uF /u0!2 G , ~18!

where

b5
kc2k

kcu0
2 ; ~19!

kc5(2A)1/2Cf and k52pH0 /l are wave numbers. Bend
are stable whenb52 1

6 . Subsidence occurs for smaller va
ues and growth of bends when values are larger~Fig. 6!.

IV. THE STATE PARAMETER OF SELF-ORGANIZED
CRITICAL SYSTEMS

The state parameterS(t) of a dynamical system measure
the state of the whole system such thatdS/dt and DS/dt
represent all microscopic and macroscopic motion within
system. The critical state corresponds exactly to one
only one value ofS. Avalanche dynamics may be repr
sented in state space as a trajectory of change inS(t) ~Fig.
7!.

Several measures may act as the state parameter
given system. For a meandering river the simplest poss
state parameter is the sinuosityS5L/ l , whereL is the size
of the system~length of the river along its course betwee
two points! and l its dimensional span~the straight line
length between the same two points!. 1<S<` and the
critical state is given byS5p. A more complex possible
state parameter is the fractal~similarity! dimension. For a
two-dimensional grainpile, the simplest state parameter is
whole slope angle between the apex and the edge of the
Alternatively, a sinuosity equivalent measure may be u
such thatL is the detailed length of the slope andl is the
straight-line distance from apex to the edge of the pile. I
not important which measure is used since any state pa
eter by definition will record the fluctuations of the system
shall assume in the following thatS refers to sinuosity when
the system is a river and to a whole slope angle when it
grainpile.

Fluctuations of the state parameterS(t) can be expresse

FIG. 6. Time lag of meander angle amplitude change@Eq. ~18!#
as a function ofb @Eq. ~19!# for different ratios of final to initial
angle amplitudeu. From @13#.
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in terms of two forces or force complexes with opposite
rection, one increasing and one decreasingS. One forceFd
5 f (ds/dt) is caused by the slow, continuous driving proce
of the system; the otherFa5 f (Ds/dt) is caused by discrete
events, but may also involve secondary, continuous chan

S~ t !5Fd~v,t !2Fa~v,s,t !,

wheres5(x1 ,x2 ,x3) is space,t is time, andv is the rate of
driving for the system in question.Fd is evenly distributed in
space and therefore only a function of time and rate of d
ing. Fa is localized in space and a function of local spat
properties of the system and is therefore also a function
space. Hence

S~ t !5Fd
↑~v,t !2Fa

↓~v,s,t !. ~20!

Which of the forces increasesS, F↑, and which decreases i
F↓, depends on howS is defined to measure the state of t
system and bothS(t)5Fd

↑2Fa
↓5Fa

↓2Fd
↑ carry exactly the

same information content. In any case, the action ofFd on S
increases the potential energy in the system andFa acts to
convert potential energy into kinetic energy and heat.

V. DETERMINISTIC REPRESENTATION
OF FLUCTUATIONS AT THE CRITICAL STATE

With reference to Eq.~20!, let us define the state param
eter value before and after a single avalancheDSi as Si

high

andSi
low , wherei refers to the timet i of occurrence of the

avalanche. The driving force is constant and therefore ha
linear, cumulative effect on sinuosity:

Fd
↑5Si 21

low 1vt, ~21!

where i 21 refers to the last occurring avalanche,i 21,t
, i . In the case of river meandering, sina is the gradient of

FIG. 7. Avalanche dynamics of free river meandering rep
sented as a trajectory of wavelength sinuosity in state space, c
sponding to the time-series interval in Fig. 1.
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56 6715FLUCTUATIONS AT THE SELF-ORGANIZED CRITICAL STATE
the plain on which the river flows. This is a measure of t
strength of the driving force and therefore determines h
fast Fd

↑ increasesS; thusv5b sinZa, whereb is a positive
constant. The action ofFa is given by

Fa
↓5Fa

↑5 f D~v,s,t !1 f C~ t !5I ~Dt i !DSi1 f C~ t !, ~22!

where f D(v,s,t) is a discrete~avalanche! component and
f C(t) any secondary continuous component caused by
avalanche process.

Each avalanche occurs in a brief, finite time intervalDta
5t j2t i , Dta!Dt, whereDt is the time interval between
successive avalanches; hence avalanches are discrete e
and avalanche dynamics is a discontinuous process~in the
case of river meandering, each avalanche takes the form
cutoff event that is infinitesimal in durationDta5dt, but on
grainpiles avalanches occur during finite time interva!.
DSi5DSi ,n represents the avalanche occurring during ti
Dta,n5t j ,n2t i ,n , where the subscriptn is thenth successive
avalanche. Given a time interval between two succes
avalanchesDt i5Dt i ,n5t i ,n2t j ,n21 , then we may define an
indicator functionI (Dt i)5$0,1%, 0 if DSi is a future event
and 1 whent5t i :

I ~Dt i !5 H0,
1,

t i ,n21,t,t i ,n

t5t i .

This requires the time interval between successive a
lanchesDt i to be known while the present timet is still
inside Dt i ~however, this knowledge is only required ju
beforet5t i!. The necessary information comes from deta
of the spatially extended dynamics of the system, as d
information aboutDS.

For any general SOC system, temporal fluctuatio
around the critical state occur according to

S~ t !5Fd
↑~v,t !2Fa

↓~v,s,t !

5$Si 21
low 1vt%2$I ~Dt i !DSi1 f C~ t !%, ~23!

where the termf C(t) may or may not be present~it is absent,
for instance, in SOC grainpiles without creep relaxation a
avalanches!. The directions ofFd and Fa are always oppo-
site. In time, they are coupled only through the resetting oS
by Si 21

low , which derives fromDSi 215Si 21
high2Si 21

low . The
physical structure of the coupling is located in the spa
domain.

For river meandering,f C(t) is a continuous element ofFa
↓

due to the neck instability@instability ~V!#. It reduces the
increase ofS immediately after avalanches, causing perio
of increase to become weakly nonlinear. In SOC syste
without this secondary element, a linear continuous cha
of the state parameter is common; cf.@7,17#.

In the river meandering case, simulations show thatf C(t)
is an exponential decay function. Irrespective of the mag
tude ofDSt , the neck residual~Fig. 5! may be considered to
span a constant river length~for a given river widthw! irre-
spective of the size of the cutoff loop. Within this span, t
unstable shape has a local sinuositySN5p/2 immediately
after the cutoff.

During neck relaxation, this sinuosity decays to a low
thresholdSN'1.3 over a constant time spanDtN5t i2tN .
e
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~The neck shape regresses and at the same time cha
shape. The relaxation stops when the shape has been t
formed back to a meander shape, i.e., a shape that allow
fastest flow path to follow the outer bank of the bend.! As-
sume the simplest case of constant relaxation~erosion! rate
of the neck axis during the decay period. A constant rate
equivalent to an exponential decay function of the ne
shape as a whole. The contribution off C8 (t) to the sinuosity
of the whole systemS5L/ l depends on the length span
the instability N52pw relative to the linear length of the
systemlw or N/ lw52p/ l ,

f C~ t !5
2p

l

p

2
expF2

1

2

k~ t2t i !

DtN
G .

It seems reasonable to allow the possibility of a variable r
of local erosion ~relaxation! of the neck shaped«N /dt,
which is measured relative to a characteristic mean ero
rate ofd«/dt51 over the same interval when the neck sha
is not present. Hence

f C~ t !5
p2

l
expF2

1

2

d«N

dt

t2t i

DtN
G .

For constant erosion rated«N /dt5k. But if d«N /dt also
relaxes from a high initial valued«N

max/dt.1 to the relative
value characteristic of erosion due to the driving for
d«/dt51, thend«N /dt may take the form

d«N

dt
5

d«N
max

dt
expF2

1

2

t2t i

DtN
G .

VI. STATE-SPACE REPRESENTATION
OF SOC DYNAMICS

The temporal fluctuations of any SOC system can be r
resented as a trajectory in the state space spanned byS and
time. S(t) is only partly known, but anS(t) time series from
simulation of the system may be used to reconstruct the
jectory in a state space spanned by previousS vs presentS
~containing the time dimension implicitly! @18#. If all trajec-
tories in a definite region of state space approach a partic
limiting point set ast goes to infinity, then that point set, o
fixed point, is called anattractor. Once at the attractor, th
trajectory is not displaced. The set of initial conditions yiel
ing such trajectories is the basin of attraction~a finite region
of phase space surrounding the attractor!. Another invariant
set, the repeller, has the opposite effect.Repellerscause di-
vergence by expelling or deflecting all trajectories into a b
sin of repulsion. An attractor is astablefixed point in the
sense that trajectories that start near it are drawn toward
repeller is anunstablefixed point in analogy with a ball
rolling off the top of a hill. The top of the hill is an equilib
rium point; the trajectory will not be displaced when exac
at the point, but the situation is unstable: Any infinitesim
perturbation causes the ball to roll away.

Fixed ~invariant! points or point sets in state space a
defined bydS/dt50 @18#. For any system, a state parame
may be found such that the minimum valueSmin is a fixed
point. For example, a flat grainpileS50 corresponds to an
invariant point sinceSmin is unchanged by perturbations~ad-
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dition of grains! on an infinite surface. A straight channelS
51 is also a fixed point since differential~bend-initiating!
deformations does not occur~in this geometry! if the flow is
laminar @19#.

A fixed point may be stable~attracting trajectories! or
unstable~repelling trajectories! @18#: for dS/dt50,

dS2/dt2,0⇒stable ~attractor!,

dS2/dt2.0⇒unstable~repeller!.

To any fixed pointS0 there is a surrounding basin of attra
tion or repulsion

$SAu@S0,~S1dS!,S#∧@S0.~S1dS!.S#%,

$SRu@S0,S,~S1dS!#∧@S0.S.~S1dS!#%.

Smin is always a repeller fords/dt with $SR% extending either
to Sc or any value ofS. The flat grainpile corresponds to a
unstable fixed point since instability~i! always moves the
system away from it until it reachesSc . For meandering
rivers, since instability~ii ! arises spontaneously in an
straight channel when flow is intermittently turbulent@5,6#,
Smin is unstable; the system will either stay on it~laminar
flow! or move away from it~turbulent flow!. $SR% extends to
any S.

Instability ~iii ! ~cutoff events! occurs spontaneously a
points of closure when the river forms a loop. The simpl
~and also most common! shape of closed loops is the asym
metric Kinoshita shape, which has a wavelength sinuo
Sl52p ~Sl refers to the minimum value ofl that allows
avalanches to occur! @7# ~Fig. 8!. Any river segment withSl

above this value is unstable; hence all geometries re
sented in the setSa5$Sl>2p% repel the macroscopic mo
tion Ds/dt. The repelling action occurs as discontinuities
the trajectory where the system is instantaneously transfe
to some point in$SlRuSl,2p% ~Fig. 7!.

Frequently in free meandering, meander bends bec
cumuliform, i.e., with small meanders superimposed on
larger one. Cumuliform bends tend to be broken up by
cutoff of the more rapidly growing small bends inside it a
thus generate an avalanche of Kinoshita cutoffs, but they
sometimes cut off as a whole and then yield wavelen
sinuosities up to approximately 6p ~the largest value ob
served in simulations!, as well as the largest cutoffs possib
in the system.

The avalanche repellerSa is indirectly caused by the ac
tion of Smin and therefore arisesif and only if Smin is present

FIG. 8. Left, semicircles,Sl5p/2; right, Kinoshita shape,Sl

52p.
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and active. In state space, this means thatSa is located within
the basin of repulsion ofSmin . If instability ~i! is stabilized,
the dynamics ofSa will also die down. Assume such a froze
state and then introduce an infinitesimally small perturbati
If 2p<Sl<6p, if a point of instability has appeared, and
the perturbation occurs exactly at this point, repulsion w
occur. Hence this sinuosity region contains an unstable, fi
set. If 1,Sl,2p, an infinitesimally small perturbation wil
not cause any sudden change; hence this interval as a w
is a stable~attracting! fixed set. The span of the attractin
region is the triangular space between the points~1,1!,
~2p,2p!, and~1,2p! @Fig. 9~a!#.

The simplest state parameter of a two-dimensional S
grainpile is the angle between the apex and the edge of
pile. The critical, minimally stable angle is 45°~based on
data in@3#!. The pile will locally build above this angle du
to instability ~i!, but these slopes are unstable, and de
slide-type avalanches@instabilities ~iii ! and ~iv!# bring the
pile angle to the angle of sliding~approximately2

3 rad! or
lower, depending of the momentum of the sliding mass. A
slope interval withS above this value is unstable to ruptu
or sliding of grain-locked domains and rolling of surfac
grains; hence all geometries represented in the setSa5$S
.45°% repel the macroscopic motionDS/dt @Fig. 9~b!#.

In both the river and the grainpile, theSmin repeller of
microscopic motion is caused directly by external forci
under a range of boundary conditions and isindependentof
any internal factors of the system. Also, avalanche motio
deflection of trajectories by a repelling point or set and
quires the presence of the independent repeller. A state-s
geometry occurs such that these two opposing repellers~one
for each type of motion! have partially overlapping basins
This overlapping region encloses a strange attractor@21,22#.

This attractor is a temporal projection of the comple
spatiotemporal strange attractor of the system, which is
actual grainpile surface or river planform~the river stays
within a bounded domain, the meander belt, without e
repeating or intersecting itself!. If meandering is constrained
by valley geometry,Fa may be prevented from arising, i
which case fractal geometry does not emerge. Instead,
organization reaches only a periodic symmetry and the
tractor becomes a limit cycle@18#.

VII. CONCLUSION

Emergence of the SOC state in any dynamical sys
requires three necessry conditions.

FIG. 9. SOC state-space dynamics. The attractor is shown
shaded area.~a! River meandering. Sinuosity across one mean
wavelength.~b! Grainpile, using the whole slope angle as the st
parameter, measured in radians.
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~i! The presence of two antagonistic forces,Fd↑ andFa↓,
such thatFd↑ causes the motiondS/dt andFa↓ causes the
motion DS/dt.

~ii ! A one-way contingency between the two forces, su
that Fa is always contingent onFd, but Fd is not contingent
on Fa.

~iii ! Both forces must act as repellers in state space, s
that Fd repelsdS/dt andFa repelsDS/dt.

It follows from conditions~i! and~ii ! thatFd is caused by
external driving andFa arises internally in the system. Con
dition ~ii ! means thatFa if, and only if, Fd. ~Fa cannot act in
the system unlessFd acts in the system.! Contingency im-
plies dependence, but not necessarily a monotonic functi
relationshipFa5 f (Fd). The contingency is one-way, be
cause althoughFd in most SOC systems will be influence
by Fa, it may well be entirely independent ofFa. The ab-
sence of contingency ofFd on Fa means thatFa does not
have to be present forFd to act indefinitely.@However, ifFa
does not arise, the dynamics is no longer in the SOC s
and S→` @7#. Violation of SOC in the absence ofFa is
stated as condition~i!.# If the two forces were both indepen
dent of each other, they could still be in a balance to form
stationary state, but this steady state would not be rob
~independent of initial conditions!. To the contrary, it would
require careful fine-tuning of parameters.

The physical meaning of condition~ii ! is the same for
both the two systems considered. Increase ofS means that
the mass of the system increases~the river is getting longer
and the grainpile higher!. Hence

Fd↑5
dp

dt
5vd

dm

dt
, where

dm

dt
.0 ~24!
tt
s.
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andp is the momentum of the whole system. The velocity
driving for the whole system,vd , is constant~given constant
discharge of the river and a constant rate of addition
grains to the pile!. Numerical simulations of river meande
ing under constant discharge have confirmed that the t
rate of change due toFd stays constant while local erosio
rates vary from one point to another@7#. Each cutoff event of
the river is caused directly by the meandering motion, a
each grain avalanche directly by the addition of grains. Th

Fa↓5
Dp

dt
5vd

Dm

dt
, where

Dm

dt
,0, ~25!

or

Fa↓5Fd↑
Dm

dm
5

dp

dt

Dm

dm
, where

Dm

dm
,0 ~26!

in accordance with conditions~i! and ~ii !.
If the forces are acting as attractors instead of repell

the dynamics will lead to a fractal basin boundary instead
an SOC strange attractor. However, more complex mi
cases will still lead to SOC. In these cases, each force ac
an attractor for one type of motion and a repeller for t
other. Condition~iii ! requires only that either force mus
have repelling action for different types of motion.

ACKNOWLEDGMENTS

I thank Alan Howard for the use of his meandering riv
simulator, and Gary Parker for a careful reading of Sec.
Per Bak and Gary Stephens provided valuable comment
d

. 12

g.
@1# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381
~1987!; M. Paczuski and P. Bak, Phys. Rev. E48, R3214
~1993!; S. Maslov, M. Paczuski, and P. Bak, Phys. Rev. Le
73, 2162 ~1994!; M. Paczuski, S. Maslov, and P. Bak, Phy
Rev. E53, 414 ~1996!.

@2# P. Bak and M. Creutz, inFractals in Science, edited by A.
Bunde and S. Havlin~Springer-Verlag, Berlin, 1994!.

@3# V. Frette, K. Christensen, A. Malthe-So”renssen, J. Feder, T
Jo”ssang, and P. Meakin, Nature~London! 379, 49 ~1996!; J. J.
Alonso and H. J. Herrmann, Phys. Rev. Lett.76, 4911~1996!;
C. H. Scholz,The Mechanics of Earthquakes and Faultin
~Cambridge University Press, Cambridge, 1990!; K. Mogi,
Tectonophysics21, 273 ~1974!; C. A. Coulomb, Acad. Sci.
Paris Mem. Math. Phys.7, 343 ~1776!.

@4# H.-H. Sto” lum, Ph.D. thesis, Cambridge University, Englan
1996.

@5# A. Thess, J. Sommeria, and B. Ju¨ttner, Phys. Fluids6, 2417
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